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Brad Efron: 
 
“By and large, Statistics is a prosperous and happy country, but it 
is not a completely peaceful one. Two contending philosophical 
parties, the Bayesians and the frequentists, have been vying for 
supremacy over the past two-and-a-half centuries. …Unlike most 
philosophical arguments, this one has important practical 
consequences. The two philosophies represent competing visions of 
how science progresses….” (Efron 2013, p. 130) 
 
(empirical Bayesian) 
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Donald Fraser: 
 
“How can a discipline, central to science and to critical thinking, 
have two methodologies, two logics, two approaches that 
frequently give substantively different answers to the same 
problems? …Is complacency in the face of contradiction 
acceptable for a central discipline of science?” (Fraser 2011, p. 
329) 

 
(frequentist confidence distribution-fiducial?)  
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Jim Berger: 
 

“We [statisticians ] are not blameless….we have not made a 
concerted professional effort to provide the scientific world 
with unified testing methodology…and so are tacit accomplices 
in the unfortunate statistical situation” (J. Berger 2003, p. 4) 
 
 “…professional agreement on statistical philosophy is not on 
the immediate horizon, but this should not stop us from 
agreeing on methodology” (ibid. p. 2) 

 
 

But what’s methodologically depends on what’s correct 
philosophically    
(default Bayesian)  
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Gelman 
Gelman & Shalizi 
“The main point where we disagree with many Bayesians is 
that we do not think that Bayesian methods are useful for 
giving the posterior probability that a hypothesis is true.... ... 
for evaluating a model…”(Gelman & Shalizi 2013, p. 2) 
 
“We	  see	  science–and	  applied	  statistics–as	  resolving	  
anomalies	  via	  the	  creation	  of	  improved	  models	  which	  often	  
includes	  their	  predecessors	  as	  special	  cases.	  This	  view	  
corresponds	  closely	  to	  the	  error-‐statistics	  idea	  of	  Mayo	  
(1996).”	  (Gelman	  2011,	  p.	  70) 
 
(Falsificationist Bayes) 
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Philosophy	  of	  Statistics	  Battles	  are	  Especially	  
Important	  Now:	  Replication	  Crisis	  

	  
• Statistical	  Findings	  Disappear	  when	  others	  look	  for	  them	  
	  

• Beyond	  the	  social	  sciences	  to	  medicine,	  bioinformatics,	  
genomics	  (Big	  Data)	  
	  

• People	  are	  serious	  about	  methodological	  reforms	  (some	  
welcome,	  others	  radical)	  
	  

• Need	  a	  better	  understanding	  of	  statistical,	  philosophical,	  
and	  historical	  issues	  
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American Statistical Association: ASA 
Statement on P-values (2016) 

 
“The statistical community has been deeply concerned about 
issues of reproducibility and replicability of scientific 
conclusions. …. much confusion and even doubt about the validity 
of science is arising. Such doubt can lead to radical choices, such 
as … to ban p-values (null hypothesis significance testing)  
 
Misunderstanding or misuse of statistical inference is only one 
cause of the “reproducibility crisis” (Peng, 2015), but to our 
community, it is an important one. (ASA, Wasserstein & Lazar, 
2016, p. 129) 
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In my Commentary on the ASA Doc: 
 

 
Statistical significance tests are a small part of a rich set of 
“techniques for systematically appraising and bounding the 
probabilities…of seriously misleading interpretations of data” 
(Birnbaum 1970, p. 1033) 
 

These I call error statistical methods (or sampling theory) 
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Error Statistics  
 

• Statistics: Collection, modeling, drawing inferences from 
data to claims about aspects of processes 

•  The inference may be in error 

•  It’s qualified by a claim about the method’s capabilities to 
control and alert us to erroneous interpretations (error 
probabilities) 
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P-value 
“p-value. …to test the conformity of the particular data under 
analysis with H0 in some respect: 

…we find a function t = t(y) of the data, to be called the test 
statistic, such that 

• the larger the value of t the more inconsistent are the data 
with H0; 

• The random variable T = t(y) has a (numerically) known 
probability distribution when H0 is true.…the p-value 
corresponding to any t as 

p = p(t) = P(T ≥ t; H0).”  (Mayo and Cox 2006, p. 81) 
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Testing Reasoning 
• Clearly, if even larger differences than tobs occur fairly 

frequently under H0 (p-value is not small), there’s scarcely 
evidence of incompatibility with H0  

 

• Small p-value indicates some underlying discrepancy from 
H0 because very probably you would have obtained a less 
impressive difference than tobs were H0 true  

• This indication isn’t evidence of a genuine statistical effect H, 
let alone a scientific conclusion H* 

 
Stat-Sub fallacy H => H* 
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Replication Paradox  
 

Significance Test Critic: It’s much too easy to get a small P-value 
 
You: Why do they find it so difficult to replicate the small P-values 
others found? 
 
 

Is it easy or is it hard?  
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• R.A. Fisher: it’s easy to lie with statistics by 
selective reporting  (he called it the “political 
principle” 1955, p. 75) 

• Sufficient finagling—cherry-picking, P-hacking, significance 
seeking—may practically guarantee a researcher’s preferred 
claim C gets support, even if it’s unwarranted by evidence  

Note: Rejecting a null taken as support for some non-null claim C 
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Severity Requirement: 
 

• If data x0 agree with a claim C, but the test procedure had little or 
no capability of finding flaws with C (even if the claim is 
incorrect), then x0 provide poor evidence for C  

Popper: agreement is “too cheap to be worth having” (1983, p. 
130) 

•  Such a test fails a minimal requirement for a stringent or severe 
test  

•  My account: severe testing based on error statistics (requires 
reinterpreting tests) 
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This alters the role of probability in inference: 

typically just two 
 
• Probabilism. To assign a degree of probability, confirmation, 

support or belief in a hypothesis, given data x0.  
(e.g., Bayesian, likelihoodist)—with regard for inner coherency 

•  Performance. Ensure long-run reliability of methods, 
coverage probabilities (frequentist, behavioristic Neyman-
Pearson) 
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What happened to using probability to assess the 
error probing capacity by the severity criterion? 

 
• Neither “probabilism” nor “performance” directly captures it.  

•  Good long-run performance is a necessary, not a sufficient, 
condition for severity 

•  That’s why frequentist methods can be shown to have howlers 
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• Problems with selective reporting, cherry picking, stopping when 
the data look good, P-hacking, are not problems about long-
runs—  

•  It’s that we cannot say about the case at hand that it has done a 
good job of avoiding the sources of misinterpreting data 
 
(key to revising role of error probabilities) 
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A claim C is not warranted _______ 
 
 
• Probabilism: unless C is true or probable (gets a probability 

boost, is made comparatively firmer) 

• Performance: unless it stems from a method with low long-
run error.  

• Probativism (severe testing) something (a fair amount) has 
been done to probe ways we can be wrong about C 
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• If you assume probabilism is required for inference, error 

probabilities are relevant for inference only by 
misinterpretation                                                   

• I claim, error probabilities play a crucial role in appraising 
well-testedness 

• It’s crucial to be able to say, C is highly believable or plausible 
but poorly tested 

• Probabilists can allow for the distinct task of severe testing 
(you may not have to take sides in the stat wars) 
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• I argue that the central role of probability in statistical 
inference is severity—its assessment and control.  

 
• Existing error probabilities (confidence levels, significance 

levels) may but need not provide severity assessments. 
 

 
Data x (from test T) are evidence for H only if H has passed a 
severe test with x (one with a reasonable capability of having 
detected flaws in H). 
 
So we need to assess this “capability” in some way. 
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By and large today’s handwringing reflects classic 
foibles  

 
In addition to Stat-Sub fallacy H => H* 

 

“In relation to the test of significance, we may say 
that a phenomenon is experimentally demonstrable 
when we know how to conduct an experiment 
which will rarely fail to give us a statistically 
significant result” (Fisher 1935, p. 14)  
  

 
“Isolated” low P-value ≠> H: statistical effect 
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“Why Most Research Findings are False” Ioannidis 
 

“the high rate of nonreplication (lack of confirmation) of 
research discoveries is a consequence of the convenient, yet ill-
founded strategy of claiming conclusive research findings solely 
on the basis of a single study assessed by formal statistical 
significance, typically for a p-value less than 0.05.” (Ioannidis 
2005, p. 0696) 
 
(Do people really do that? Shame on them.) 
 

• So-called NHST – Null Hypothesis Significance Tests 
• allows going from statistical to substantive, with a single low P-

value 
•  If defined that way, they exist only as abuses of tests  
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Neyman-Pearson (N-P) Tests: 

A null and alternative hypotheses H0, H1 that exhaust the parameter 
space 

 
H0: µ ≤ µ0 against H1: µ > µ0. 

 
• So the fallacy of rejection H – > H* is 

impossible 
 
• Rejecting the null only indicates statistical 

alternatives 
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N-P hypothesis test (in their naked mathematical form): maps 
each x = (x1, …,xn) into either H0, or H1 ensuring the probabilities 
of erroneous rejections (type I errors) and erroneous acceptances 
(type II errors) are controlled at small values, e.g., 0.05 or 0.01, the 
significance level of the test   
	   if d(x0) >  cα, "reject" H0,  or declare result statistically significant 
at the α level 

if d(x0) <  cα, "do not reject" H0, (“accept”) or declare result 
statistically insignificant at the α level  
e.g. cα=1.96 for α=.025 
 
The complement of the Type II error = power against μ’  
POW(μ’) Pr(d(X) > cα; μ = μ’)    
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Thought to be limited to “performance” 
Neyman, not Pearson, was generally the behavioristic-performance 
one (in theory but not in practice; whereas, Fisher was the reverse)  
I found an article where Neyman responds to philosopher Carnap’s 
criticism of “Neyman’s frequentism” 
Neyman (criticizing Carnap):  
“I am concerned with the term ‘degree of confirmation’ introduced 
by Carnap.  …We have seen that the application of the locally best 
one-sided test to the data…failed to reject the hypothesis [that the 
26 observations come from a source in which the null hypothesis is 
true].  The question is: does this result ‘confirm’ the hypothesis 
that H0 is true of the particular data set?” (Neyman 1955, p. 40-1)  
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“Locally best one-sided Test T” 
An IID sample X = (X1, …,Xn) each Xi is Normal N(μ,σ2), σ 
assumed known; M the sample mean 

H0: μ ≤ μ0 against H1: μ > μ0.     
Test Statistic  d(X) = (M – μ0)/σx 
σx = σ/√𝑛  

 
Test fails to reject the null, d(x0) ≤  cα.  

“The question is: does this result ‘confirm’ the hypothesis 
that [H0 is true of x0)]?” (Neyman 1955, p. 40). 
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Carnap says yes… 
Neyman: 
 

“….the attitude described is dangerous. 
…the chance of detecting the presence [of discrepancy δ from 
the null], when only [this number] of observations are 
available, is extremely slim, even if [δ is present].” (Neyman 
1955, p. 41)   
 
“The situation would have been radically different if the power 
function…were greater than 0.95.” 
“A more cautious attitude would be to form one’s intuitive 
opinion only after studying the power function of the test 
applied.” (ibid.) 
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Power	  Analysis 
	  

If Pr(d(X) > cα; μ = μ0 + δ) is high  
d(X) < cα  

infer: discrepancy < δ 
 

P(d(X) > cα; μ = μ0 + δ)   Power at μ’ 
μ’ = μ0 + δ   
 
Strict behaviorists only use power for planning; Neyman is using it 
for post-data interpretation. 
 
(given it’s continuous, can use ≥ or >) 
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Severity & Fallacies of Non-Statistically Significant 
Results 
	  

Neyman’s criticism of Carnap deals with a classic fallacy of non-
significant results: to construe such a “negative” result as evidence 
for the correctness of the null hypothesis.   

 
“no evidence against” is not “evidence for” 
 

Merely surviving the statistical test is too easy, occurs too 
frequently, even when the null is false. 

  
“… it is a little rash to base one’s intuitive confidence in a given 
hypothesis on the fact that a test failed to reject this hypothesis.” 
(Neyman, ibid.)	   	  
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Power vs SEV Post Data  
(1)  P(d(X) > cα; μ = μ0 + δ)   Power to detect δ 

• Neyman requires (1) to be high (for non-significance to 
warrant μ < μ0 + δ)   

• Just missing the cut-off cα is the worst case 

• It is more informative to look (2):  

 (2)  P(d(X) > d(x0); μ = μ0 + δ)   “attained power” 

• can be low while (2) is high 

• a measure of the severity for the inference μ < μ0 + δ     
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Frequentist Principle of Evidence 

In Mayo and Cox 2006, it’s in terms of the P-value  

FEV: insignificant result: A moderate P-value is evidence of 
the absence of a discrepancy δ from  H0, only if there is a high  
probability the  test would have given a worse fit with H0 (i.e.,  
d(X) > d(x0)) were a discrepancy δ to exist. (pp. 83-4) 
	  
(i.e., only if (2) is high) 
 

Assumes the test passes an “audit” (selection effects are taken 
account of, model assumptions not violated) 
 
“Frequentist Statistics as a Theory of Inductive Inference” 
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Duality with (1 – ε) Upper confidence Bound 
 
Test T: Normal testing: H0: μ < μ0 vs  H1: μ > μ0  
σ is known 
 
 (FEV/SEV): If d(x) is not statistically significant, then  
 
                μ  <  M0 + kεσ /√𝑛  
 
       passes test T with severity (1 – ε), where P(d(X) > kε) = ε. 
 
 (Mayo 1996, Mayo and Spanos 2006, 2011): 
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If one wants to emphasize the post-data measure, one can write: 
 

SEV(μ < M0  + kσx):  The severity with which  
 

(μ < M0  + kσx)  
       

passes test T 
 
 
Severity has 3 terms: SEV(Test, outcome, inference) 
 
Significance tests require a SEV supplement to grapple with 
Principle 5: A p-value does not measure the size of an effect   
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One can consider a series of upper discrepancy bounds… 
 

SEV(μ  < M 0  + 0σx) = .5       
SEV(μ  < M 0  + .5σx) = .7      
SEV(μ  < M 0  + 1σx) = .84   
SEV(μ  < M 0  + 1.5σx) = .93   
SEV(μ  < M 0  + 1.96σx) = .975   

 
Is this just another way to say how probable each claim is? 
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No.  This would lead to inconsistencies  
 
Some call it a “confidence distribution” 
 
Probability logic differs from a logic for “how well-tested”  
       (or “corroborated”) a claim is  
 
• low severity is not just a little bit of evidence, but bad 

evidence, no test  
• Both C and ~C can be poorly tested 
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Severity vs. Rubbing–off 
 
The severity construal is different from what I call the 
 

Rubbing off construal:  The procedure is rarely wrong, 
therefore, the probability it is wrong in this case is low.   

 
Still too much of a performance criteria, too behavioristic 
 
The long-run reliability of the rule is a necessary but not a 
sufficient condition to infer H (with severity) 
Today’s fiducialists? 
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The reasoning instead is counterfactual:  
H:  μ  < M0 + 1.96σx 

  (i.e., μ  < CIu ) 
 

H passes severely because were this inference false, and the true 
mean μ  >  CIu then, very probably, we would have observed a 
larger sample mean.  
 
 
 
[1] Examples in handout  
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The supplement for rejection avoids fallacies of significant 
results in an analogous way 

 
• Infer a substantive inference unwarranted from the statistical 

inference 
 

• Infer a discrepancy from the null beyond what the test 
warrants 

 
Severity goes in the opposite direction of power when inferring a 
discrepancy from the null with a statistically significant result: 
 

An α-significant difference indicates less of a discrepancy 
from the null with large n than if it resulted from a smaller 
sample size.   
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Rather than number crunching, I want to turn to a 
conceptual issue  
 
(It comes up in the ASA document) 
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ASA Statement: P-values aren’t posteriors in 
hypotheses 

	  
Principle 2: P-values do not measure (a) the probability that 
the studied hypothesis is true, or (b) the probability that the 
data were produced by random chance alone.  
 
I inserted the (a), (b) should not be equated to (a).  

• A delicate issue 
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 “5 sigma observed effect”	  
 

One of the biggest science events of 2012-13 was the 
announcement on July 4, 2012 of evidence for the discovery of a 
Higgs particle based on a “5 sigma observed effect”.  
 
With the March 2013 data analysis, the 5 sigma difference grew to 
7 sigmas.  
• The discovery was immediately imbued with controversies 

from philosophy of statistics  
 

• I’m an outsider to high energy physics, HEP, a philosopher of 
statistics should be able to illuminate some of the more public 
controversies e.g., P-values. 
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 O’Hagan, prompted by Lindley 
 
To the ISBA: “Dear Bayesians: We’ve heard a lot about the Higgs 
boson. ...Specifically, the news referred to a confidence interval 
with 5-sigma limits.… Five standard deviations, assuming 
normality, means a p-value of around 0.0000005… 
 
Why such an extreme evidence requirement?  We know from a 
Bayesian perspective that this only makes sense if (a) the existence 
of the Higgs boson has extremely small prior probability and/or 
(b) the consequences of erroneously announcing its discovery are 
dire in the extreme.  … 
  …. Are the particle physics community completely wedded to 
frequentist analysis?  If so, has anyone tried to explain what 
bad science that is?”  



	   -‐43-‐	  

 
Bad science? 

 
• HEP physicists are sophisticated with their statistical 

methodology: they’d seen too many bumps disappear 
 

• They want to ensure that before announcing the hypothesis 
H*: “a new particle has been discovered” that: 

H* has been given a severe run for its money. 

 

Significance tests and cognate methods (confidence intervals) are 
methods of choice here for good reason 
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	  Higgs statistical significance test 
 
(i) Null or test hypothesis: in terms of an unknown parameter μ in 
a statistical model of the detector 

μ is the “global signal strength” parameter 
H0: μ = 0 i.e., zero signal (background only hypothesis) 

 
H0: μ = 0  vs.   H1:  μ  > 0  

 
μ = 1: Standard Model (SM) Higgs boson signal in addition to 

the background   
 
(I follow Robert Cousins, an HEP physicist) 
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(ii) Test statistic or distance statistic: d(X) 
	  

d(X): how many excess events of a given type are observed 
(from trillions of collisions) in comparison to what would be 
expected from background alone (in the form of bumps) 
 

(iii) The P-value (or significance level) associated: 
 

P-value =Pr(d(X) > d(x0); H0) 
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The distribution of statistic d(X) is the sampling distribution 
 

Pr(d(X) > 1; H0) = .16 
Pr(d(X) > 2; H0) = .02 

 Pr(d(X) > 3; H0) = .001 
   Pr(d(X) > 4; H0) = .00003 
    Pr(d(X) > 5; H0)= .0000003 

 
The probability of observing results as or more extreme as 5 
sigmas, under H0, is approximately 1 in 3,500,000.  
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There’s generally a rule of interpretation (not strict):  

• if d(X) > 5 sigma, infer discovery 
 

• if  d(X) > 2 sigma, get more data  
 
 

They want methods with high capability to detect discrepancies 
while avoiding mistaking spurious bumps as real.  
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The P-Value Police 
 

When the July 2012 report came out, a number of people set out to 
grade the different interpretations of the P-value report: 

P-value=Pr(d(X) > d(x0); H0) 
 
Larry Wasserman calls them the “P-Value Police”. 

• Job: to examine if reports by journalists and scientists could be 
seen to have misinterpreted the sigma levels as posterior 
probability assignments to the various models and claims. 

Sir David Spiegelhalter: Prof of Public Understanding of Risk, 
Cambridge  
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Thumbs up or down 
Thumbs up, to the ATLAS group report: 

(i) A statistical combination of these channels and others puts 
the significance of the signal at 5 sigma, meaning that only one 
experiment in three million would see an apparent signal this 
strong in a universe without a Higgs. 

Thumbs down to reports such as: 
(i)’ There is less than a one in 3.5 million chance that their 
results are a statistical fluctuation (or fluke). 

A statistical fluctuation: an apparent signal actually due to chance 
variability. “the background fluctuation probability” (ATLAS) 
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Critics allege (i)’misinterprets the P-value as a posterior 
probability on H0  
Not so.  
 
H0 does not say the observed results are due to background alone, 
or are flukes, 

H0: μ = 0  
 
If H0 were true (about what’s generating the data), it follows that 
various results would occur with specified probabilities. 
(e.g, that large bumps are improbable)  
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What “the results” really are 
 

P-value = Pr(d(X) > d(x0); H0) 
Pr(overall test procedure would yield d(X) > d(x0); H0) 

 
Recall 

“In relation to the test of significance, we may say that a 
phenomenon is experimentally demonstrable when we know 
how to conduct an experiment which will rarely fail to give us 
a statistically significant result”  
(Fisher 1935, p. 14)  
  

(“isolated” low P-value ≠> H: statistical effect) 
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Since it’s not just a single result, but an overall test procedure, 
when you see Pr(d(X) > 5; H0) insert “Test T produces” 
 
     (1) Pr(Test T produces d(X) > 5; H0) ≤  .0000003 

        Pr(a 5 sigma fluctuation) 

 

Note: (1) is not a conditional probability (involves a prior) 

Pr(Test T produces d(X) > 5 and H0)/ Pr(H0) 

 
Only random variables or their values are conditioned upon.  
The assignment of probabilities to values of d(X) “under the null” 
may be seen as a tautologous statement. 
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Ups C  
U-1. The probability of the background alone fluctuating up by this amount 

or more is about one in three million.  

U-2. Only one experiment in three million would see an apparent signal this 
strong in a universe described in Ho.  

U-3. The probability that their signal would result by a chance fluctuation 
was less than one chance in 3 million 

Downs D  
D-1. The probability their results were due to the background fluctuating up 

by this amount or more is about 1 in 3 million. 

D-2. One in 3 million is the probability the signal is a false positive—a 
fluke produced by random statistical fluctuation. 

D-3. The probability that their signal was a result of a chance fluctuation 
was less than one chance in 3 million.
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Various	  objections	  to	  “this”	  

(i) the P-value refers to a difference as great or greater–a tail 
area.  

Reply: But if the probability {d(X) ≥ d(x)}is low under H0, then 
Pr(d(X) = d(x);H0) is even lower.  

(ii) frequentists don’t assign a probability to this particular data 
(on July 4, 2012), except maybe 0 or 1.  
 

Reply: True, but that’s the way frequentists always give 
probabilities to generic events, whether they actual or 
hypothetical excess of 5 sigma  
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Another Possibility: How it looks to a Bayesian 
probabilist 

 
“The key distinction between Bayesian and sampling theory 
statistics is the issue of what is to be regarded as random and what 
is to be regarded as fixed. To a Bayesian, parameters are random 
and data, once observed, are fixed” (Kadane 2011, p. 437) 

  
 “[t]o a sampling theorist, data are random even after being 
observed, but parameters are fixed” (ibid.).   
(violates the Likelihood Principle) 
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Through a Bayesian probabilist lens…. 
 
D-1 through D-3 seem to assign a probability to a hypothesis 
(about the parameter) since the data are known, only the parameter 
is unknown.  
 
But they’re to be scrutinizing a non-Bayesian procedure.  
	  
To an error statistician, the probability that the results are a mere 
statistical fluctuation = the probability the method would produce 
results (e.g., bumps) as impressive as these, under H0.  
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Not some mysterious reference to “outcomes other than the 
ones observed” 

 
The error probabilities in U-1 through U-3 are based on simulating 
relative frequencies of events where H0: μ = 0  
(given a detector model) with much cross-checking 
 

(1) Pr(test T would produce a P-value 
< .0000003; H0) <  .0000003. 

 
D-1, 2, 3 are just slightly imprecise ways of expressing U-1,2,3.   
 
So what’s the legitimate objection to D-1, 2, 3? 
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The real problem with D-1 through D-3 
 

It’s the danger in moving from them to their complements: From: 
 
 There’s a .0000003 probability their results are due to chance, 
 to 
There’s a .999999 (or whatever) probability their results are 
not due to chance, are not a fluctuation and so on 
And those claims are wrong.  
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The correct way to compute Pr(not-A; H0)  

 
Pr(test T would produce a P-value < .0000003; H0) <  .0000003.  
 
Pr(test T would not display a P-value < .0000003; H0) ≥  .9999997. 
 
There’s no transposing! The hypothesis after the “;” does not 
switch places with the event to the left of “;”! 
 
 
I admit U claims are safer, but there’s something else….  
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Detaching Inferences Uses a Severity Principle 
U-1 through U-3 are not statistical inferences! 
 
They are the (statistical) justifications associated with implicit 
statistical inferences [in brackets]:  

U-1. The probability of the background alone fluctuating up by 
this amount or more is about one in three million. 

[Thus, our results are not due to background fluctuations.] 
U-2. Only one experiment in three million would see an 
apparent signal this strong in a universe [where H0 is adequate].  

[Thus H0 is not adequate.] 
U-3. The probability that their signal would result by a chance 
fluctuation was less than one chance in 3.5 million. 

[ Thus the signal was not due to chance.]  
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Additional (Implicit) Premise 
Severity Principle: (from small P-values) Data provide evidence 
for a genuine discrepancy from H0 (just) to the extent that 
H0 would (very probably) have survived, were H0 a reasonably 
adequate description of the process generating the data). 
(1)’ Pr(Test T produces d(X) < 5; H0) > .9999997 

• With probability .9999997, the bumps would be smaller, 
would behave like statistical fluctuations, disappear with 
more data, not be produced at both CMS and ATLAS, if H0. 
  

• They didn’t disappear, they grew 
 

(2) So, H*: a Higgs (or a Higgs-like) particle. 
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What’s detached with high severity? 
 

	  

ATLAS reports: “these results provide conclusive evidence for the 
discovery of a new particle with mass [approximately 125 GeV]” 
(Atlas Collaboration 2012, p. 15) 
 
H*: a Higgs boson consistent with the SM  
(at the levels of precision and accuracy of these experiments) 
 

	    



	   -‐64-‐	  

The inference goes beyond a p-value report  
Infer: 

 There is strong evidence for  
(first) a genuine discrepancy from H0 
(later) H*: a Higgs (or a Higgs-like) particle. 

 
Gradations: indication, evidence, discovery (up to July 4, 2012) 
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Main role for significance tests is: Curb your enthusiasm 
 
It affords a standard for:  

• denying sufficient evidence of a new particle, inferring “not a 
genuine effect”, and 

• ruling out values of various parameters, e.g., mass ranges. 
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Look Elsewhere Effect (LEE) 

 
A nominal (or local) P-value: the P-value at a particular, data-
determined, mass. 
 
But the probability of so impressive a difference anywhere in a 
mass range would be greater than the local one. 
 
Requiring a smaller P-value (i.e., bigger difference), at least 5 
sigma, is akin to adjusting for multiple trials or look elsewhere 
effect LEE. 
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2015/16 Update 
When the collider restarted in 2015, it had far greater collider 
energies than before. On December 15, 2015 something exciting 
happened: “ATLAS and CMS both reported a small "bump" in 
their data at a much higher energy level than the Higgs: 750 GeV 
(compared to 125 GeV).  
Hundreds of theory papers that attempt to explain the signal” I 
believe it was 500.  
The significance reported by CMS is still far below physicists’ 
threshold for a discovery: 5 sigma, or a chance of around 3 in 10 
million that the signal is a statistical fluke. (Cartlidge 2016) 
The inference to a genuine discovery didn’t pass severely, and was 
then falsified 
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Some HEP may be unhappy with me:  
 
Am I encouraging a construal of P-values that physicists have bent 
over backwards to avoid?  
 

I think they are reacting to critical reports based on how things 
look from Bayesian probabilists’ eyes.   
• For a Bayesian, once the data are known, they are fixed 

  
• For the severe tester, Pr{d(X) > d(x0); H} for various H) isn’t 

irrelevant once d(x0) is known.   
 
It’s the way to determine, with the addition of the severe testing 
principles, whether the null hypothesis can be falsified  
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Concluding Remarks 
 
Underlying the debates are two assumptions as to: 
 

What we need 
Probabilism: the role of probability in inference is to assign 
a degree of belief, support, confirmation  

 
What we get from error statistical (“frequentist’ )methods  

N-P Performance (so irrelevant to inference) 
A Fisherian attempts to be evidential but p-values aren’t 
posterior probabilities (so it too fails) 
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We reject probabilism and performance 
 
• Probabilism says H is not justified unless it’s true or probable 

(or increases probability, makes firmer). 
 

• Performance says H is not justified unless it stems from a 
method with low long-run error  
 

• Probativism says H is not justified unless we’ve probed done 
to probe ways we can be wrong about H, and found them 
absent   
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• The severity principle directs us to the relevant error 
probabilities, avoiding the classic counterintuitive examples 
 

• Where differences remain (disagreement on numbers) e.g., P-
values and posteriors, we should recognize the difference in the 
goals promoted 
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Thinking we want a posterior probability in H* might be a slip 
from what may be inferred from this legitimate high probability:   
 

Pr(test T would not reach 5 sigma; H0) >  .9999997 
 

With probability .9999997, our methods would show that the 
bumps disappear, under the assumption data are due to 
background H0.  
 
They don’t disappear but grow. 
 
Infer H* 
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Test T+: Normal testing: H0: μ < μ0 vs.  H1: μ > μ0  
σ known 
	  

(FEV/SEV): If d(x) is not statistically significant, then  
μ < M0 + kεσ/√𝑛  passes the test T+ with severity (1 – ε).  
 
(FEV/SEV): If d(x) is statistically significant, then  
μ > M0 – kεσ/√𝑛  passes the test T+ with severity (1 – ε).  

 
where P(d(X) > kε) = ε (standard Normal curve) 
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FEV: insignificant result: A moderate P-value is evidence of the 
absence of a discrepancy δ from  H0, only if there is a high 
probability the  test would have given a worse fit with H0 (i.e.,  
d(X) > d(x0)) were a discrepancy δ to exist.  
 
FEV significant result d(X) > d(x0) is evidence of discrepancy δ 
from  H0, if and only if, there is a high probability the  test would  
have  d(X) < d(x0) were a discrepancy as large as δ absent. 
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Dear Bayesians, 

A question from Dennis Lindley prompts me to consult this list in search of answers. 

We've heard a lot about the Higgs boson. The news reports say that the LHC needed convincing evidence before they 
would announce that a particle had been found that looks like (in the sense of having some of the right characteristics of) 
the elusive Higgs boson. Specifically, the news referred to a confidence interval with 5-sigma limits. 

Now this appears to correspond to a frequentist significance test with an extreme significance level. Five standard 
deviations, assuming normality, means a p-value of around 0.0000005. A number of questions spring to mind. 

1. Why such an extreme evidence requirement? We know from a Bayesian perspective that this only makes sense if (a) 
the existence of the Higgs boson (or some other particle sharing some of its properties) has extremely small prior 
probability and/or (b) the consequences of erroneously announcing its discovery are dire in the extreme. Neither seems to 
be the case, so why 5-sigma? 

2. Rather than ad hoc justification of a p-value, it is of course better to do a proper Bayesian analysis. Are the particle 
physics community completely wedded to frequentist analysis? If so, has anyone tried to explain what bad science that is? 

3. We know that given enough data it is nearly always possible for a significance test to reject the null hypothesis at 
arbitrarily low p-values, simply because the parameter will never be exactly equal to its null value. And apparently the LNC 
has accumulated a very large quantity of data. So could even this extreme p-value be illusory? 

If anyone has any answers to these or related questions, I'd be interested to know and will be sure to pass them on to 
Dennis. 

Regards, 

Tony 
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[1] Duality between a 1-sided test and the upper CI bound:	  
Example: X’s are Normal IID  H0: μ ≤ 0 vs H1: μ > 0 n = 100
 σ = 2 σ/√100   =.2 

Let M0 = .4  (the ~2 SD cut-off) 
SEV(μ  ≤ .8)  = Pr(M > .4; μ  > .8) 

Compute at Pr(M > .4; μ  = μ’= .8) since SEV is larger for μ  > .8  

Test Statistic  d*(X) = √100  (M - μ’)/σ 

So we get:  d*(X) = √100  (.4 – .8)/2 = -.4/.2 = -2 
Area to the right of -2 on N(0,1) chart is .975 
.8 is the .975 upper confidence bound (we’d estimate σ) 

Infer μ ≤ M0 + 2σ/√𝑛   
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[2] Compare POW and SEV (Mayo and Spanos 2011, p.178) 

EX: H0: μ ≤ 0 against H1: μ > 0 σ = 2, n= 100, σ/√100   =.2 
The power analyst says: an insignificant result is good evidence  

(μ  < μ’)  iff POW(μ’) is high 
They take the worst case of just missing a rejection, i.e., M = .392 
For simplicity, take M = .4 and compare POW and SEV 
SEV(μ  < μ’)  = Pr(d > d0; μ  < μ’ is false) 
d0; “accords with” H0.  SEV(μ  < μ’)  = The probability of getting a 
“worse fit” assuming μ  < μ’ is false. 
Compute as Pr(d > d0; μ  = μ’) since it’s greater for μ  > μ’ 

Test Statistic  d*(X) = √100  (M - μ’)/σ 
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Consider the inference: μ  < .2 
POW(.2) = Pr (d > .4; .2) = .16 (inference to μ  < .2 is always lousy) 
This is to compute SEV(μ  < .2) assuming M = .4 the critical value 
Compute at Pr(d > d0; μ  = .2) since it’s greater for μ  > .2 
Pr(d > .4; μ’  = .2 ) 

 d*= (.4 - .2)/.2  = 1, so  SEV(μ  < .2)  = .16 
SEV takes account of the particular insignificant M0 value: 
Let M = .3: SEV(μ  < .2)  = Pr(d > .2; μ  = .2)  

d*= (.3 – .2)/.2  = .5, so  SEV(μ  < .2)  = .3 
Let M = .1: SEV(μ  < .2)  = Pr(d > .1; μ  = .2)  

d*= (.1 – .2)/.2  = -.5 so  SEV(μ < .2)  = .69 
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The ASA’s Six Principles 
 

(1) P-values can indicate how incompatible the data are with a specified 
statistical model 
 

(2) P-values do not measure the probability that the studied hypothesis is 
true, or the probability that the data were produced by random chance alone 

 
(3) Scientific conclusions and business or policy decisions should not be 

based only on whether a p-value passes a specific threshold 
 

(4) Proper inference requires full reporting and transparency 
 

(5) A p-value, or statistical significance, does not measure the size of an 
effect or the importance of a result 

 
(6) By itself, a p-value does not provide a good measure of evidence 

regarding a model or hypothesis	  	    
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